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1. Executive Summary 

This protocol presents the methodology to downscale global land use projections at the scale of 

pondscapes. Previous efforts have used the Global biodiversity model for policy support 

(GLOBIO4) to downscale the global Land Use Harmonization (LUH2) data to discrete land-use 

grids of 10 arc-seconds resolution (~300 m). Here, we extend the GLOBIO4 model to further 

downscale the LUH2 land use projections at spatial resolution of 100 m. The following sections 

present details on the GLOBIO4 model's land-use allocation method, how to pre-process input 

data, and future land use maps. 

2. Introduction 

Human land use, particularly its influence on land cover, is a major driver of ecosystem 

distribution and function, and consequently of ecosystem service delivery. Changes in land use 

pose a rising threat to natural ecosystems all over the world. Small aquatic ecosystems, such as 

ponds, are particularly vulnerable, and legislation often fails to preserve them. Many ponds are 

endangered by development and contamination from the surrounding land, yet little is known 

about their biodiversity and conservation importance. Changes in land use pose a threat to the 

biodiversity and ecosystem function of small water bodies. Land cover and land use information 

is needed at various spatial and temporal scales – from local to global, and from historic records 

to future models – to analyse the relationship between land use changes and their impacts on 

biodiversity. At the local and regional levels, such data are also required for spatial planning. 

Models are essential for quantifying land use changes and evaluating the efficacy of 

conservation and restoration efforts. Land use and land cover change models are growing in 

abundance and complexity due to technological advancements and integration of 

methodologies from other disciplines. Different types of approaches that have been adopted by 

researchers to model land use change include linear models, regression analysis, flow systems, 

cellular automata and Markov chains, neural networks, and agent-based models (Azimi Sardari 

et al., 2019). A common thread running across all models is the need to downscale global, 

continental, or regional land requirements to more local, spatially explicit, and visually satisfying 

outputs. 

Deriving land use change (LUC) maps at a fine spatial resolution and over large spatial extents 

can be useful for various purposes (Dendoncker et al., 2006). For instance, land use (LU) patterns 

have been demonstrated to have an impact on ecological processes (Parker and Meretsky, 
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2004), community and species distribution (Peppler-Lisbach, 2003), soil organic carbon stocks 

(Smith et al., 2006) and water cycle (Chen et al., 2019). Downscaling is also necessary for a more 

accurate assessment of LUC impacts on the biodiversity of natural areas, which are influenced 

not only on the quantity of LU but also on the spatial configuration of landscapes that define the 

relative connectivity or isolation of these areas (Wimberly and Ohmann, 2004). Knowing where 

LUC will occur is important to predict biodiversity threats and propose effective conservation 

policies (Vale et al., 2021).  

LUC has been regarded as a significant component in simulating Earth system dynamics, and LUC 

inputs at appropriate time steps and spatial resolutions are necessary to match the 

configuration of Earth system models (ESMs) and the nature of the spatial heterogeneity of 

Earth system processes (Brovkin et al., 2013; Lawrence et al., 2016). While ground investigation 

or satellite remote sensing can be used to get recent historical LUC data (Friedl et al., 2002; 

Hansen et al., 2000; Loveland et al., 2000; Zhang et al., 2003), future LUC projections are mainly 

based on mathematical models that integrate socioeconomic and other data from different 

sectors into a coherent framework to simulate the interactions between human and natural 

systems (Chen et al., 2019). For example, the Global Change Assessment Model (GCAM), which 

gives LUC projections at the regional–agroecological or water basin level, has been frequently 

used to investigate future social and environmental scenarios under various climate mitigation 

measures (Edmonds et al., 1997; Kim et al., 2006). ESMs divide the Earth’s surface into a number 

of grid cells and their forcing data must be provided at the same spatial resolution (Taylor et al., 

2012). As a result, spatial downscaling of subregional LUC has become a crucial step in linking 

models such as GCAM and ESMs to examine the effects of LUC on natural processes and explore 

the relationships between human and natural systems (Hibbard and Janetos, 2013; Lawrence et 

al., 2012). 

To date, there are only a few global gridded LU datasets that are publicly available for ESM 

simulations (Vale et al., 2021). One representative example is the Land Use Harmonization 

dataset version 2 (LUH2), which is the most complete data in terms of time-series and scenarios 

of climate change (Vale et al., 2021). LUH2 offers a new harmonized set of land-use scenarios 

that smoothly connects historical land-use reconstructions with eight future projections in the 

format required for ESMs (Hurtt et al., 2020). LUH2 is a global gridded land-use dataset at 0.25° 

× 0.25° resolution. It includes estimates of historical land-use change (850-2015) and future 

projections (2015-2300) that were generated by integrating and harmonizing land-use history 

with future projections from various of different integrative assessment models (IAMs) 
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(Jungclaus et al., 2017; Kim et al., 2018; Lawrence et al., 2016; O’Neill et al., 2016). Essentially, 

LUH2 harmonizes and, at times, downscales LU projections from GCAM or similar models, such 

as IMAGE11, REMIND-MAGPIE12, MESSAGE-GLOBIOM13, and AIM (Chen et al., 2020). 

The first generation of models (LUH1) (Hurtt et al., 2011, 2006) provided harmonized land use 

data for the years 1500–2100 at 0.5° × 0.5° resolution and projected future land-use land-cover 

under CMIP5's Representative Concentration Pathways greenhouse gas scenarios (RCPs). The 

current generation of models (LUH2) (Hurtt et al., 2020) project future land-use land-cover 

under CMIP6’s Shared Socioeconomic Pathways greenhouse gas scenarios (SSPs)(Vale et al., 

2021). LUH2 is driven by the most recent SSPs, has a greater spatial resolution (0.25° vs 0.50°), 

more detailed land-use transitions (12 vs 5 potential land-use states), and increased data-driven 

constraints than LUH1 (Kim et al., 2018). With annual time steps, LUH2 supports over 100 

possible transitions per grid cell per year (e.g., crop rotations, shifting cultivation, agricultural 

changes, wood harvest) and numerous agricultural management layers (e.g., irrigation, 

synthetic nitrogen 30 fertilizer, biofuel crops) (Kim et al., 2018). Primary and secondary natural 

vegetation are divided into forest and non-forest sub-types, pasture is divided into managed 

pasture and rangeland, and cropland is divided into multiple crop functional types (C3 annual, 

C3 perennial, C4 annual, C4 perennial, and N fixing crops) in the 12 states of land (Kim et al., 

2018) (Table 1).  

Table 1. Comparing Land Use Harmonization v2 (LUH2) with LUH v1 (sources: Hurtt et al., 

2011, 2020; Kim et al., 2018). 

LUH version LUH v1 LUH v2 

Spatial resolution 0.5 degree 0.25 degree 

Time steps Annually from 1500 to 

2100 

Annually from 850 to 2300 

Land use categories 5 categories 

Primary 

Secondary 

Pasture 

Urban  

Crop 

12 categories 

Forested primary land (primf) 

Non-forested primary land (primn) 

Potentially forested secondary land 

(secdf) 

Potentially non-forested secondary 

land (secdn) 

Managed pasture (pastr) 

Rangeland (range) 
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Urban land (urban) 

C3 annual crops (c3ann) 

C3 perennial crops (c3per) 

C4 annual crops (c4ann) 

C4 perennial crops (c4per) 

C3 nitrogen-fixing crops (c3nfx) 

Future RCPs (4) 

2.6 

4.5 

6.0 

8.5 

SSPs (6) 

SSP1-RCP2.6 

SSP4-RCP3.4 

SSP2-RCP4.5 

SSP4-RCP6.0 

SSP3-RCP7.0 

SSP5-RCP8.5 

Land use transitions < 20 per grid cell per year >100 per grid cell per year 

Improvements  - New shifting cultivation algorithm 

- Landsat forest/non-forest change 

constraint 

- Expanded diagnostic package 

- New historical wood harvest 

reconstruction 

- Agricultural management layers: 

irrigation, fertilizer, biofuel crops, 

wood harvest product split, crop 

rotations, flooded (rice) 

Global land‐use projections, such as the LUH2 data, have a coarse spatial resolution (0.25°) and 

tend to underestimate the spatial heterogeneity of land‐use patterns at local to regional scales. 

Therefore, more detailed LULC information is needed for local-scale applications. Although 

previous studies have attempted the downscaling of LUH2 projections at various spatial 

resolutions, with the finest resolution achieved by Schipper et al. (2020) who used the Global 

Biodiversity model for policy support (GLOBIO) to downscale it to 300 m resolution, but still a 

global high-resolution discrete land-use map (100 m or finer) is not currently available. 

Therefore, in Work Package 3, we have developed a protocol to extend the GLOBIO model to 

further downscale land use projections at 100 m (and finer) spatial resolution.  
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The GLOBIO model was developed in cooperation with multiple partners by PBL Netherlands 

Environmental Assessment Agency and is intended to inform and support policymakers by 

quantifying global human impacts on biodiversity and ecosystems. The model is linked to PBL's 

IMAGE model, which is an integrated assessment model that simulates the global environmental 

effects of human activities (Doelman et al., 2018). The IMAGE-GLOBIO framework has been 

widely applied to environmental assessments in recent years, including for the Convention on 

Biological Diversity (CBD) and the Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services (IPBES)(Schipper et al., 2020). 

This model is capable of downscaling (or spatially allocating) low-resolution land-use data 

(regional totals or 'claims') to a global high-resolution discrete land-use map that is compatible 

with the GLOBIO 4 model environment. Specifically, we are downscaling three future Shared 

Socio‐economic Pathway (SSP) scenarios in the LUH2 data, Sustainable Development (SSP1), 

Regional Rivalry (SSP3), and Fossil‐fuelled Development (SSP5), for the 2018 to 2050 period 

(Table 2). The sustainability scenario is characterized by a relatively low population growth, low 

consumption due to less resource‐intensive lifestyles (e.g., a decrease in meat consumption) and 

more resource‐efficient technologies, combined with improved technologies, increased 

regulation of land‐use change due to expansion of the protected area network, and significant 

progresses in agricultural productivity, permitting for reforestation (Schipper et al., 2020). High 

population expansion, resource intensive consumption, low agricultural productivity, and 

limited regulation of land use change characterize the regional rivalry scenario, resulting in 

ongoing deforestation. Finally, the fossil-fuelled development scenario is characterized by low 

population increase, significant economic growth, a consumption-oriented and energy-intense 

society, and highly intensive agricultural practices that result in reduced deforestation. 

Following the biodiversity model intercomparison protocol, we mixed the SSPs with climate 

projections based on the RCPs (Table 2 and Table 3) so that the combinations encompassed a 

broad range of land use and climate change (Kim et al., 2018). 

SSP1 (moderate land use pressure) was linked with RCP2.6 (low level of climate change), SSP3 

(high land use pressure) with RCP6.0 (moderate level of climate change), and SSP5 (moderate 

land use pressure) with RCP8.5 (high level of climate change). The SSP3 x RCP6.0 and SSP5 x 

RCP8.5 combinations reflect the so-called baseline scenarios, which include only minor or no 

climate change mitigation policies. 
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Table 2. Characteristics of SSP scenarios (source: Kim et al., 2018). 

 SSP1 Sustainability SSP3  

Regional Rivalry 

SSP5  

Fossil-fuel Development 

Population growth Relatively low Low (OECD countries) 

to high (high fertility 

countries) 

Relatively low 

Urbanization High Low High 

Equity and social 

cohesion 

High Low High 

Economic growth High to medium Slow High 

International trade 

and  

globalization 

Moderate Strongly constrained High 

Land-use regulation Strong to avoid 

environmental 

trade-off 

Low with continued 

deforestation due to 

agriculture expansion 

Medium with slow 

decline in deforestation 

Agricultural 

productivity 

High improvements 

with diffusion of 

best practices 

Low with slow 

technology 

development and 

restricted trade 

Highly managed and 

resource intensive 

Consumption & diet Low growth in 

consumption, low 

meat 

Resource-intensive 

consumption 

Material-intensive 

consumption, meat-rich 

diet 

Environment Improving Serious degradation Highly successful 

management 

Carbon intensity Low High High 

Energy intensity Low High High 

Technology 

development 

Rapid Slow Rapid 

Institution 

effectiveness 

Effective Weak Increasingly effective 

Policy focus Sustainable 

development 

Security Development, free 

market, human capital 
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Participation of the 

land-use sector in 

mitigation policies 

Full Limited Full 

International 

cooperation for 

Climate change 

mitigation 

No delay Heavy delay Full 

 

Table 3. Characteristics of RCP scenarios (source: Kim et al., 2018). 

 RCP2.6 Low 

emissions 

RCP6.0 

Intermediate 

emissions 

RCP8.5 High emissions 

 

Radiative forcing

  

  

Peak at 3W/m2 

before 2100 and  

decline 

Stabilizes without 

overshooting  

pathways to 

6W/m2 in 2100 

Rising forcing pathways 

leading  

to 8.5 W/m2 in 2100 

Concentration (p.p.m) Peak at 490 CO2 

equiv. before  

2100 and then 

declines 

850 CO2 equiv. (at 

stabilization  

after 2100) 

>1,370 CO2 equiv. in 2100 

Methane emission Reduced Stable Rapid increase 

Reliance on fossil fuels Decline Heavy Heavy 

Energy intensity Low Intermediate High 

Climate policies Stringent Very modest No implementation 

 

3. Methods 

Study area 

The analysis was conducted on Belgium, a small and highly urbanized country in the densely 

populated region of Western Europe (Vandenbulcke et al., 2009) with an average population 

density of circa 370 inhabitants per km2 (Beckers et al., 2020). Belgium, despite its small size, 

contains a lot of geological variation. The Baltic plain is to the north, while the old Hercynian 

massifs of Central Europe lie to the south. Apart from the Ardennes, the climate is quite warm 
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and moist, allowing for extensive grass growth. Due to the high population density in the North, 

extensive animal farming has developed (Dendoncker et al., 2007). The best soil conditions can 

be found in the country's central region, where arable farming is most prevalent. Because most 

of the country's southern region (particularly the Hautes–Ardennes) has a harsh climate and 

soils that prevent the development of industrial crops, grasslands and forests are the major LU 

(Dendoncker et al., 2007). 

 

Figure 1. Map of the study area (Belgium). 

 

Globio Land Use Allocation module 

Land-use is an important GLOBIO input parameter. The Discrete Land-use Allocation module is 

a GLOBIO 4 pre-processing module that can be run in the GLOBIO 4 framework. We have 

extended a routine to downscale land‐use data to discrete global maps with a spatial resolution 

of 5 arc‐seconds (100 meter). This improves the ability to account for spatial heterogeneity as 

well as ecological consequences that are influenced by the landscape's spatial configuration. 

GLOBIO's land use allocation method can work with user-defined land-use classes and regional 

totals, or ‘claims,' represented in surface area per region per land-use class. Each land-use class's 

regional totals are spatially allocated based on an overall ‘suitability layer' for that class 

(Schipper et al., 2020). This layer is created using a collection of environmental factors that 

influence the probability of the land-use class of concern being present in that grid cell. Land 
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cover, road proximity, elevation, and slope are examples of relevant environmental factors 

(Schipper et al., 2020). 

The allocation algorithm prioritizes potential grid cells based on their suitability values and 

allocates claims for each land use type in each region starting with the cells with the highest 

suitability and working its way down to the total claim (Schipper et al., 2020). GLOBIO allocates 

land in a predetermined order, with urban land coming first, followed by cropland, reflecting the 

fact that urbanization is often prioritized over other land uses (including existing cropland) 

(d’Amour et al., 2017), and cropland expansion often occurs in forest or grazing land (Piquer-

Rodríguez et al., 2018). Following that, forestry and pasture are allocated, with forestry 

allocating within remaining forest areas and grazing occurring in regions that are not productive 

enough for crops (Hasegawa et al., 2017). If several cells in a particular region are equally 

suitable for a certain land use type, the land use claim is distributed among them at random. 

Claims or changes in claims from the previous scenario–year combinations are assigned to each 

scenario–year combination. If the land claim allocated in one scenario–year is smaller than the 

claim allocated in the preceding scenario–year, cells are abandoned in reverse order of 

suitability and assigned to urban (Schipper et al., 2020). 

Land use type 

The following land-use types (Table 4) were utilized during the extension process and can be 

defined in the module's configuration file. 

Table 4. Land use types 

Code Type 

1 Urban 

2 Crop 

3 Pasture 

4 Forestry 

5 Baren 

6 Undefined 
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Data 

The following input datasets (Table 5) are used by the extended Land-use Allocation module. 

Before being utilized as input, many of these datasets are pre-processed. Pre-processing usually 

included resampling and resizing the original dataset, as well as converting to a tif raster. 

Table 5. Input datasets 

Type Description  Data type and range 

  Regions                                           Raster with regions Integer, 0 to 255 

Land-cover            Raster with land-cover Integer, 0 to 255 

  Land-use                           Raster with land-use  Integer, 0 to 255 

  Not-allocatable areas      Raster with areas which can 

not be allocated  

Integer, 0 = allocatable, 1 = 

not-allocatable 

Suitabilities     Rasters with suitability for 

the land-use types to 

allocate. 

Floating point, 0.0 (not 

suitable) to 1.0 (highly 

suitable) 

  Land-use claims                File with the claim areas in 

km2 per region of the land-

use types to allocate. 

CSV file 

  Land-use claims lookup   File with the translation of 

the land-use class in the 

claim file to the land-use 

types. 

CSV file 

The land-use claims file should be in CSV format and contain at least the fields listed below (Table 

6). 

Table 6. Land-use claims 

  Type          Description 

Land-use    Land-use code or name. 

  Area        Claim area in km2. 

A CSV file with at least the following fields should be specified when a land-use claims lookup 

file is specified (Table 7). 
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Table 7. Land-use claims look-up 

Type        Description 

Land-use class    The land-use class used in the claim file. 

Land-use type     The land-use type used in the configuration 

file. 

 

Input data preparation  

Many of these datasets have been pre-processed before being used as input, as detailed below.  

Land cover map  

We have used Corine land-cover map for the reference year 2018 to establish a baseline land-

use map for the present day. The classification system of Corine is different from LUH2, with 12 

land use classes in the LUH2 datasets and 44 land use classes in Corine. To make these two 

datasets comparable for land use simulations, we have merged them into six major classes 

(forest, pasture, cropland, urban, barren, and water) (Figure 2). Because the change in the 

amount of water area is not projected in the LUH2 datasets, we assume that water areas do not 

change under different scenarios and are not simulated in the land use simulation model in this 

study. 
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Figure 2. Merged land cover classification into six major land classes for Belgium. 

 

Suitability layers 

We created a suitable layer for each of the four major land-use types for compiling the 

downscaled land-use maps (urban area, cropland, pasture, and forestry) based on the guidelines 

employed by Schipper et al (2020) for downscaling land use at 300 meters. Because spatial 

clustering and edge expansion have been identified as significant factors in the growth of urban 

areas and croplands, we retrieved the suitability layers for urban areas (Figure 3) and croplands 

(Figure 4) based on their proximity to existing urban areas and croplands (Ay et al., 2017; Huang 

et al., 2019; Richards, 2018). To that end, we used the Corine land-cover map (after 

reclassification) to calculate the Euclidean distance to existing urban area (class 1) or croplands 

(class 2), assign the highest suitability to existing cropland or urban area, and invert and 

normalize the distances to existing urban area or cropland. We also set the suitability of non-

urban and non-cropland cells inside protected areas to zero, based on the assumption that 

urban and cropland areas within protected areas would not expand beyond what they were in 

2018. The World Database of Protected Areas (WDPA) was used to define protected areas. 
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Figure 3. Urban suitability layer for Belgium. 

 

Figure 4. Cropland suitability layer for Belgium. 

We created a pasture suitability layer (Figure 5) based on the density of ruminant livestock 

species (goats, sheep, and cattle) from the FAO's gridded livestock of the world dataset (GLW; 

head per km2, 30 arc-seconds)(Robinson et al., 2014). Modelled livestock densities are provided 

by the GLW, which are based on detailed subnational livestock statistics and a set of predictor 
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variables linked to climate, vegetation, topography, and demography (Schipper et al., 2020). To 

account for variances in body mass among livestock species, we converted their densities to 

tropical livestock units (Petz et al., 2014). 

 

 

Figure 5. Pasture suitability layer for Belgium. 

We considered that access to wood is mostly determined by elevation, proximity to 

infrastructure, and the presence of protected areas when creating the forestry suitability layer 

(Schipper et al., 2020) (Figure 6). The Euclidean distance to the nearest road was calculated. We 

used the GRIP database to get a worldwide road map (Meijer et al., 2018). To get at suitable 

values between 0 and 1, we inverted and normalized the distances and multiplied the resulting 

values with inverted and normalized elevation values (retrieved from the Copernicus Land 

Monitoring Service and resampled to 4 arc-seconds). We also assumed that no forestry activities 

would take place in protected areas, therefore we set the suitability values for forestry inside 

protected areas to zero. Finally, we clipped the forestry suitability layer to land cover with trees, 

using the Corin land cover map for 2018 (classes 4), and set the suitability of other cells to zero. 
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Figure 6. Forestry suitability layer for Belgium. 

Claims 

Claims can be obtained from national or regional statistics or from models, such as integrated 

assessment models, that estimate land demand based on socioeconomic developments 

(Schipper et al., 2020). All claims must be expressed in terms of area (km2). Jelle Hilbers' R 

algorithm for aggregating LUH data from grid cells to larger regions was utilized and modified. 

In this code, we have specified three of the shared socio‐economic pathways (SSPs) combined 

with different levels of climate change (according to representative concentration pathways 

[RCPs]) in the LUH2 data for the 2015 to 2050 period: (SSP1 x RCP2.6), a future determined by a 

politically divided world (SSP3 x RCP6.0) and a future with continued global dependency on fossil 

fuels (SSP5 x RCP8.5). This code, on the other hand, is expandable, so you can add other 

scenarios and time periods to extract claims for different scenarios and dates. 

Not-allocatable areas 

Not-allocatable areas (Figure 7) were constructed by reclassifying the reclassified land cover 

map into two classes: allocated areas (Urban, crop, pasture, forestry and barren) and not 

allocated areas (undefined). 
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Figure 7. Non-allocatable area map. 

 

Module description  

After installing the GLOBIO 4 software (see the installation guide in the 

https://github.com/GLOBIO4/GlobioModelPublic/wiki ), the Land-use Allocation module can be 

run like any other GLOBIO 4 module using the command globio4. We have provided some 

detailed information about how to run the model in the sections below. 

The following directories in GLOBIO4 are used to create a Raster with allocated land-use. 

● Directory – Calculations: 

The directory Calculations contains the GLOBIO_CalcDiscreteLanduseAllocation.py which 

calculates the discrete land-use allocation. 

● Directory – Config: 

The directory \Config contains the LanduseAllocation.glo which defines the land-use allocation 

module.  

● Directory – LandAllocation  

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FGLOBIO4%2FGlobioModelPublic%2Fwiki&data=04%7C01%7Cp.rashidi%40bangor.ac.uk%7C5fc6601f27224994e09408d9eaf2864d%7Cc6474c55a9234d2a9bd4ece37148dbb2%7C0%7C0%7C637799149641923802%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=AdZ8ZmqXOsYm99lJZtDelcMG6rIHhVy%2FPwYQO%2F6p0hw%3D&reserved=0
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This directory contains additional Python modules used for the Land Use Allocation module. The 

following Python modules are present: ClaimFile.py which is a class for reading land-use claim 

files, and LanduseType.py which is a class for storing land-use type information. 

● Directory – Scripts 

The Directory – Scripts which calculates the global discrete land-use allocation. To define and 

execute a model run, a script file should contain at least a run definition and a run command. A 

run definition is an execution block with commands to be executed. The commands can be 

variable assignments or commands for running other blocks like scenarios, modules or 

calculations. 

Definition of the module 

The Land-use Allocation module is defined in the configuration file LanduseAllocation.glo 

located in the Config directory (PBL Netherlands Environmental Assessment Agency ,2021). The 

Land-use Allocation module is defined as follows:  

CalcDiscreteLanduseAllocation( 

          IN EXTENT Extent, 

          IN CELLSIZE CellSize, 

          IN STRING LanduseCodes, 

          IN STRING LanduseNames, 

          IN STRING LandusePriorityCodes, 

          IN RASTER Landcover, 

          IN RASTER Regions, 

          IN STRING RegionFilter, 

          IN STRING RegionExcludeFilter, 

          IN RASTER Landuse, 

          IN STRING LanduseReplaceCodes, 

          IN STRING LanduseReplaceWithCode, 

          IN STRING LanduseUndefinedCode, 

          IN RASTER NotAllocatableAreas, 

          IN RASTER PAReduceFactor, 

          IN STRING SuitRasterCodes, 

          IN RASTERLIST SuitRasterNames, 
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          IN FILE ClaimFileName, 

          IN STRING ClaimLanduseFieldName, 

          IN STRING ClaimRegionFieldName, 

          IN STRING ClaimAreaFieldName, 

          IN FILE ClaimLookup, 

          IN STRING ClaimAreaMultiplierLanduseCodes, 

          IN STRING ClaimAreaMultipliers, 

          IN RASTER CellAreas, 

          IN BOOLEAN AddNoiseFlag, 

          OUT FILE OutRegionAreasFileName, 

          OUT FILE OutRegionLandcoverAreasFileName, 

          OUT FILE OutRegionLanduseAreasFileName, 

          OUT RASTER OutAllocatedLanduse) 

 

Table 8 below describes the parameters of the Land-use Allocation module. 

Table 8. Parameters of the Land-use Allocation module. 

Name Description 

Extent                           The regional extent, e.g., world. 

Cell Size                         The cell size, e.g., 4sec. 

Land use Codes                     The user-defined land-use codes, e.g., 1|2|3|4|5|6. 

Land use Names                     

 

The user-defined corresponding land-use e.g., 

urban|crop|pasture|forestry|baren |undefined. 

Land use Priority Codes    The sequence in which the land-use codes are 

allocated, e.g., 1|2|3|4. 

 Not all user-defined land-use codes need to be 

allocated. 

Landcover                        

                                

Name of raster with land-cover. 

Regions       Name of raster with regions. 

Region Filter       Selection of region codes which are processed, e.g., 

11|12. 
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Use NONE for all regions. 

Region Exclude Filter Selection of region codes which are not processed, e.g., 

7|16|17. 

  Use NONE for no regions. 

Land use                          Name of raster with land-use. 

Land use Replace Codes              

 

The land-use codes of areas which are not allocated, 

and which will be replaced with the Land use Replace 

With Code at the end of the allocation process, e.g. 

1|2|3|4. 

Land use Replace With Code           

 

The code of the user-defined land-use codes which will 

be used to fill not-allocated areas at the end of the 

allocation process, e.g., 5. 

Land use Undefined Code             

 

The code of the user-defined land-use codes which will 

be used to fill areas which could not be allocated, e.g., 

6. 

Not Allocatable Areas              

 

Name of raster with not-allocatable areas (0 = 

allocatable, 1 = not-allocatable). 

PAReduce Factor                 

 

Name of raster with the factors which will be used to 

reduce the suitability in protected areas (0.0 = high 

protection, 1.0 = no protection). 

 Use NONE for no raster with protected areas. 

Suit Raster Codes                  

 

The corresponding land-use codes for the Suit Raster 

Names, e.g., 1|2|3|4. 

Suit Raster Names                  

 

The names of the suitability rasters for the land-use 

types. 

The suitability varies from 0.0 (not suitable) to 1.0 

(highly suitable). 

Claim File Name                    

                                 

The name of the csv file with land-use claims (km2) per 

region per land-use type. 

Claim Land use Field Name            The name of the field with the land-use type in the 

claim file. 

Claim Region Field Name             

 

The name of the field with the region code in the claim 

file. 
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Claim Area Field Name The name of the field with the claim area in the claim 

file 

Claim Look up                      

 

The lookup file to translate land-use classes in land-use 

names. 

Use NONE if no translation is needed. 

Claim Area Multipliers            

 

The corresponding land-use codes for the Claim Area 

Multipliers, e.g., 1|2|3|4. 

Claim Area Multiplier Land-use 

Codes  

 

A list of factors which will be multiplied with the 

corresponding land-use claim area, e.g. 

2.0|4.0|1.0|0.5. 

Cell Areas                        Name of raster with cell areas (km2). 

Add Noise Flag                     

 

Flag which can be used to add semi-random noise to 

the suitability rasters, e.g., TRUE. 

Out Region Areas File Name         

 

Name of the file for summarized cell areas per region. 

 Use NONE if no cell areas need to be calculated. 

Out Region Land use Areas File 

Name 

Name of the file for summarized cell areas per region 

per land-use type. 

 Use NONE if no cell areas need to be calculated. 

Out Allocated Land use   Name of raster with the new allocated land-use. 

 

Starting a run within Windows 

In Windows, open the command window and go to the directory where GLOBIO 4 is installed 

(for example C:\Python27\Globio4). Type the following command: 

cd \Python27\Globio4\Scripts 

Create your own configuration script or edit the existing configuration file 

Run_LanduseAllocation.glo in the directory Scripts. Modify the paths and other settings to meet 

your needs. To run the script, type the following command. 

globio4 Run_LanduseAllocation.glo 

After the script is finished the results can be found in the output directory specified in the script. 

Calculation rules 
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The Land-use Allocation module uses the following calculation rules (in pseudo-code) to create 

a map with allocated land-use types.  

● Read the suitability maps for the land-use types to allocate. 

● Read the file with land-use claims (km2). 

● Optional: translate the land-use classes of the claims to land-use types. 

● Read de map with not-allocatable areas. 

● Optional: Read the map with the reduce-factors for protected areas. 

● Read the map with regions and create a list of region codes. Apply the region filter or the 

excluded region list. Remove region codes for which there are no land-use claims. 

● Read or create a map with raster cell areas in km2. 

● Create an empty map for the allocated land-use output (0 = is empty/not yet allocated). 

● Read the sequence of land-use types in which they are allocated. 

● For all land-use types in this list do:  

● Read the suitability map for this land-use type. 

● Optional: Multiply the suitability with the reduce factor for protected 

areas. 

● Optional: Add semi-random noise to the suitability map. The minimum 

difference between all successive suitability values is calculated. For 

each cell this value is multiplied by a random value between 0.0 and 0.9 

which is generated with a fixed seed. This semi-random value is added 

to the suitability value of that cell.    

● For all regions do: 

● Select all cells within the region. 

● Select in here all cells which are allocatable (i.e. not not-allocatable). 
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● Select in here all cells which are not allocated yet by a previous 

processed land-use type. 

● Sort the remaining cells on suitability from high to low values. 

● Get the cell areas of the sorted cells. 

● For these cells calculate the cumulative area. 

● From this list get the index of the first cell with the cumulative area 

which is greater or equal to the claim area of the current processed 

land-use type and region. 

● Assign to these cells in the map of allocated land-use the currently 

processed land-use type. 

● Select all empty cells which are allocatable but lie outside the 

processed regions. Assign the user-defined 'undefined' land-use type 

to these cells. 

•     For all processed land-use types do: 

● Select in the allocated land-use map all cells which have in the input 

land-use map the current land-use type. 

● Select in here all cells which are not allocated yet. Assign to these cells 

the user-defined 'replace' land-use type e.g. 'secondary vegetation'. 

•    Read the land-cover map. 

•    Select all cells which are not allocated yet. Assign to these cells the code from the land-cover 

type. 

•    Save the allocated land-use map. 

•    Optional: Calculate areas. 
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4. Results 

The GLOBIO4 Land-use Allocation module is extended and used to simulate and use changes in 

Belgium for the period from 2018- 2100. The following output datasets have been calculated.  

Present-day land-use map 

We used the land-use allocation routine with the reclassified Corine land-cover map for 2018 as 

the 'background' map, the suitability layers as described above, and country-level total areas 

(i.e., 'claims') of urban, cropland, pasture, and forestry land to create a land-use map for the 

reference year 2018 (Figure 8). Like the method of Schipper et al. (2020), we used two data 

sources to get the most representative claims for 2018: claims for urban area and cropland from 

the Corine map for 2018 (i.e., the land-cover background map itself) and claims for pasture and 

forestry (which cannot be distinguished from natural grasslands or natural forest, respectively, 

based on remotely sensed land-cover maps) from FAOs country-level statistics for 2018. We 

defined the pasture claim as the total of permanent and temporary meadows at the country 

level, and the forestry claim as the total of planted forest at the country level. The use of the 

same source for both the suitability layers and the claims of urban and cropland regions meant 

that the 'claims' for urban and cropland areas were only assigned to cells identified as such in 

2018, i.e., the allocated layers were similar to the Corine map for 2018. As a result, we adhered 

as near as possible to the claims and patterns identified in 2018. 
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Figure 8. Present day land use map. 

 

Future land-use maps 

To create the future land-use maps (Figures 9, 10, and 11), we used the LUH2 dataset to calculate 

country-level total areas of the four land use types (urban, farmland, pasture, and forestry) for 

each scenario-year (i.e., 2015 and three times 2050, for each SSP scenario). Because the 

historical land-use forcing dataset (LUH2 v2) covers the years 850 to 2015, and this year is the 

closest to 2018, when land use change is negligible, we chose 2015 from the LUH2 historical 

dataset. We calculated cropland claims as the sum of the areas of the five cropland types 

included in LUH2 (c3ann + c3per + c4ann + c4per + c3nfx) forestry claims as the sum of wood 

harvest from forested cells and non-forested cells with primary vegetation (primf harv + primn 

harv), and pasture claims as the sum of pasture and rangeland areas (Schipper et al., 2020). For 

each future scenario year, the difference in area of each land-use types relative to 2015 (LUH2 

historical dataset) was computed, and the difference was added to the claims defined for 2018 

(as mentioned above), with the sum being the overall claim (Schipper et al., 2020). As a result, 

rather than defining the claims themselves, we used the LUH2 data to define the change in 

claims, reasoning that the integrated assessment models underlying LUH2 are good at 

representing temporal trends in land use, but that remote sensing data and national statistics, 
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which were included in our initial land-use map, are better at representing the current situation 

(Schipper et al., 2020). 

 

Figure 9. Future land-use map under SSP1 RCP2.6 scenario from 2018 to 2100. 

 

 

Figure 10. Future land-use map under SSP3 RCP6.0 scenario from 2018 to 2100. 
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Figure 11. Future land-use map under SSP5 RCP8.5 scenario from 2018 to 2100. 

 

5. Conclusion 

Land-use allocation routine of the GLOBIO4 model has been extended to downscale the 

fractional LUH2 data to discrete land-use grids (5 arc-seconds resolution; ~100 m). To that end, 

the areas of urban, cropland, pasture, and forestry from LUH2 were first aggregated across the 

LUH2 grid cells to the national level, with forestry consisting of the wood harvest from forested 

cells and non-forested cells with primary vegetation. Next, the totals per region were allocated 

to 100m cells with the GLOBIO4 land allocation routine, with specific suitability layers for urban, 

cropland, pasture, and forestry. The allocation algorithm then prioritizes candidate grid cells 

according to their suitability values and allocates the claims of each land-use type in each region 

starting from the cells with the highest suitability until the total claim is allocated. In the 

allocation a predefined order is followed, where urban land takes precedence over cropland 

(d’Amour et al., 2017) and cropland in turn takes precedence over pasture (Hasegawa et al., 

2017). If for a given land-use type in a given region there are multiple cells with the same 

suitability, the allocation is done randomly. Forestry and pasture are allocated thereafter, such 

that forestry is allocated within remaining forest areas, and reflecting that grazing typically takes 
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place in areas not productive enough for crops (Hasegawa et al., 2017). If for a given land‐use 

type in a given region multiple cells have equal suitability, the land‐use claim is distributed 

randomly among those cells. Claims or changes in claims relative to a preceding scenario– year 

are allocated per scenario–year combination. If the land claim allocated in a given scenario–year 

is smaller than the claim allocated in the preceding scenario–year, cells are abandoned in 

reverse order of suitability and assigned to baren. In this report GLOBIO4 land allocation routine 

is used at national level for Belgium, the proposed methodology can be used at global, 

continental, national and landscape levels.  

 

6. Further information 

The following data sources were used for running the model. 

a) https://land.copernicus.eu/pan-european/corine-land-cover 

b) http://luh.umd.edu/data.shtml.   

c) https://www.iucn.org/theme/protected-areas/our-work/quality-and-

effectiveness/world-database-protected-areas-wdpa 

d) https://worldmap.harvard.edu/data/geonode:Digital_Chart_of_the_World 

e) https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 

f) FAO, 2018. FAOSTAT Land domain. http://www.fao.org/faostat/en/#data/RL 

g) https://github.com/GLOBIO4/GlobioModelPublic/wiki 

All the codes are provided in a GitHub repository.  

https://github.com/GLOBIO4/GlobioModelPublic 

 

https://land.copernicus.eu/pan-european/corine-land-cover
http://luh.umd.edu/data.shtml
https://www.iucn.org/theme/protected-areas/our-work/quality-and-effectiveness/world-database-protected-areas-wdpa
https://www.iucn.org/theme/protected-areas/our-work/quality-and-effectiveness/world-database-protected-areas-wdpa
https://worldmap.harvard.edu/data/geonode:Digital_Chart_of_the_World
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
http://www.fao.org/faostat/en/#data/RL
https://github.com/GLOBIO4/GlobioModelPublic/wiki
https://github.com/GLOBIO4/GlobioModelPublic
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