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1. Executive Summary 
 

This protocol presents the methodology to downscale the Global Climate Models’ results to be used at 

pondscape scale.  After giving the information about global climate models, how to download and map 

the global climate model results, the bias corrections are presented. Lastly, the downscaling 

methodology proposed is explained in this report.  

2. Introduction 
 

Global Climate Models (GCM) are mathematical representations of the major climate system 

components of Earth and relevant systems. GCM comprehends and makes predictions by getting the 

information of climate components and their interactions including atmosphere, land surface, ocean and 

water bodies. 

GCMs can be divided as energy balance models, intermediate complexity models and general circulation 

models. Energy balance models are mostly utilized for forecasting climate change of Earth via the 

energy budget of Earth. Likewise, intermediate complexity models are very similar to energy balance 

ones. On the other hand, they also consider some geographical features for large scale scenarios like 

atmospheric composition changes over time. Lastly, general circulation models can be counted as the 

most complex and accurate models. These kinds of models use three dimensional grids and observe so 

many components like carbon cycle, water circulations, chemistry of atmosphere. However, this results 

in a requirement of a large amount of computing power and time. Schematic view of the processes and 

interactions are depicted in Figure 1. 
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Figure 1. Depiction of the processes and interactions for the global climate models (Le Treut et al., 

2005). 

Coupled Model Intercomparison Project (CMIP) 1 is run by the World Climate Research Program 

(WCRP) Working Group on Coupled Modelling (WGCM) with the central goal of advancing scientific 

understanding of the Earth system. Since 1995, CMIP has coordinated climate model experiments 

involving multiple international modeling teams worldwide and has developed in phases (Taylor et al., 

2012). CMIP model simulations have also been regularly assessed as part of the Intergovernmental Panel 

on Climate Change (IPCC) Climate Assessments Reports and various national assessments. 

Recently the sixth phase of (CMIP6) is available with numerous academic and operational institutions 

around the world whose outputs of climate models are shared with a common set of inputs.  Participating 

model groups are given in Table 1. 

 

 

  

 

 

 

 

 

                                                           
1 https://www.wcrp-climate.org/wgcm-cmip 
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Table 1. CMIP6 Participating Model Groups (Eyring et al., 2016). 

 Institution Country  Institution Countr

y 

 Institution Country 

1 AWI Germany 1

2 

DOE USA 2

3 

MRI Japan 

2 BCC China 1

3 

EC-Earth-

Cons 

Europe 2

4 

NASA-GISS USA 

3 BNU China 1

4 

FGOALS China 2

5 

NCAR USA 

4 CAMS China 1

5 

FIO-RONM China 2

6 

NCC Norway 

5 CasESM China 1

6 

INM Russia 2

7 

NERC UK 

6 CCCma Canada 1

7 

INPE Brazil 2

8 

NIMS-KMA Republic of Korea 

7 CCCR-IITM India 1

8 

IPSL France 2

9 

NOAA-GFDL USA 

8 CMCC Italy 1

9 

MESSY-Cons Germany 3

0 

NUIST China 

9 CNRM France 2

0 

MIROC Japan 3

1 

TaiESM Taiwan, China 

1

0 

CSIR-CSIRO South 

Africa 

2

1 

MOHC UK 3

2 

THU China 

1

1 

CSIRO-BOM Australia 2

2 

MPI-M Germany 3

3 

Seoul Nat.Uni Republic of Korea 

 

Latest studies for the performance of CMIP6 for different outputs revealed that CMIP6 can capture the 

trends of global surface temperatures due to the observational data (Fan et al., 2020) and the extreme 

precipitations (Dong and Dong, 2021). It has been concluded that CMIP6 highly outperforms CMIP5. 

Additionally, CMIP6 reduces the intermodal variability and error in precipitation and temperature 

(Bağçaci et al., 2021). However, researchers should remember that these models may have some 

uncertainties especially for regional studies (You et al., 2021). 

Inherently, these models have coarser resolutions and may be impractical for local 

observations/predictions. Therefore, researchers and scientists have developed and utilized 

‘downscaling’ methods to use the coarse data for local sites. 

Downscaling is the procedure of compiling the information from large scales to the local scales. Main 

aim is shifting the coarse resolution of climate models to the finer and locally utilizable spatial data. 

This process is divided as dynamical and statistical downscaling which are commonly used in different 

disciplines like climatology, remote sensing and meteorology (Peng et al., 2017). 

Dynamical downscaling drives higher resolution of extrapolated simulations of climate models. These 

models are sometimes called as ‘regional climate models (RCM)’. They utilize the information of global 

models as boundary conditions and reproduce local climates. However, they are computationally 

intensive.  
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Statistical downscaling is a method to develop a relationship between the past observed climate data 

(from local stations most of the time) and the relevant output of climate models. Researchers have 

downscaled emission scenarios, land surface temperatures and rainfalls for many models and many 

decades owing to its less computational efforts (Fowler et al., 2007). On the other hand, there are some 

important highlights and recommendations to consider for a fine scale, downscaled model. Firstly, there 

are assumptions and approximations which means there are uncertainties inherently. Secondly, the 

representation might be beyond the capacity of GCM outputs. Lastly, downscaling can be both spatially 

and temporally. The combination of their outputs might increase the accuracy of prediction for climate 

change. The components for developing statistically or dynamically downscaled climate projections are 

summarized in Figure 2. 

 

Figure 2. Components for developing climate projections (Daniels et al., 2012). 

Statistical downscaling has numerous techniques to carry out the process. They are mostly simple to 

implement but require a considerable amount of high-quality observational data. These methods can be 

classified in three groups as ‘linear methods’, ‘weather classifications’, ‘weather generations’. 

Linear methods help to downscale the models using the linear relation between the predictors and 

predictands. They are quite straightforward and commonly used. However, they require normally 

distributed predictor and predictands values which may be a problematic constraint in some data types. 

For example, rainfall might be very though to downscale with linear methods, because the distribution 

of rainfall is mostly not normal and most researchers concluded that the rainfall value distributions of 

gamma and log-normal give the best fits (Sharma & Singh, 2010). Some examples for linear methods 

are delta method, linear and multiple linear regression, canonical correlation analysis (CCA) and 

singular value decomposition (SVD). 

Weather classifications are utilized for the process of predictions for local variables on large-scale 

atmospheric states. The future states from GCMs match with the similar historical atmospheric results.  

All distribution types are convenient for these methods. However, a large amount of data is needed (e.g., 

30 years of daily data for the region of interest). Lastly, these methods are computationally demanding. 

Some examples for weather classification methods are analog methods, clusters, artificial neural 

networks (ANN) and other machine learning methods like self-organizing map (SOM). 
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Weather generators are typically used in temporal downscaling like sequences of daily weather variables 

(precipitation, humidity etc.) which correspond to monthly or annual averages. They are quite useful for 

some impact models that need temporal downscaling, which GCMs cannot reliably provide. Some 

examples for weather generators are MarkSim GCM, nonhomogeneous hidden Markov model (NHMM) 

and other stochastic weather generators like LARS-WG. 

A summary table for statistical downscaling categories and their predictors/predictands with advantages 

and disadvantages can be seen in Table 2. 

 

Table 2. Statistical downscaling categories and their predictors/predictands with advantages and 

disadvantages (Trzaska & Schnarr, 2014). 

Category Predictor & Predictand Advantages Disadvantages 
 

Linear Methods 

- Spatial 

 

Same type of variable 

(e.g., both 

Monthly temperature, 

both 

monthly 

precipitation) 

● Relatively 

straight- 

forward to 

apply 

● Employs full 

range of 

available 

predictor 

variables 

● Requires normality of data 

(e.g., monthly temperature, 

monthly precipitation, long-

term average temperature) 

● Cannot be applied to non-

normal distributions (e.g., daily 

rainfall) 

● Not suitable for extreme events. 

 

Weather 

Classification -

Spatial and 

temporal 

 

Variables can be of the 

same type or different 

(e.g., both monthly 

temperature or one 

monthly wind and the 

other monthly 

precipitation) 

● Relatively 

straight- forward 

to apply 

● Employs full 

range of 

available 

predictor 

variables 

● Yields physically 

interpret- able 

linkages to 

surface climate 

● Versatile, i.e., 

can be applied to 

both normally 

and non-

normally 

● Requires normality of data (e.g., 

monthly temperature, monthly 

precipitation, long-term average 

temperature) 

● Cannot be applied to non-

normal distributions (e.g., daily 

rainfall) 

● Not suitable for 

extreme events 

● Requires additional step of 

weather type classification 

 

 

Weather 

Generator-

Spatial and 

temporal 

Same type of 

variable, different 

temporal scales (e.g., 

predictor is monthly 

precipitation and 

predictand is daily 

precipitation) 

● Able to simulate 

length of wet  

and  dry spells 

● Produces large 

number of series, 

which is valuable 

for uncertainty 

analysis 

● Production of 

novel scenarios 

● Data-intensive 

● Only some weathers generators 

can check for the coherency 

between multiple variables (e.g., 

high insolation should not be 

predicted on a rainy day) 

● Requires generation of multiple 

time-series and statistical post- 

processing of results 

 

Lastly, benefits, drawbacks and application fields of dynamical and statistical downscaling are 

summarized in Table 3. 
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Table 3. Benefits, drawbacks and application fields of dynamical and statistical downscaling (Patz et 

al., 2005). 

Downscaling Type Benefits Drawbacks Applications 

Dynamical Downscaling ● Simulates Climate 

Mechanisms 

● No a priori 

assumptions about 

how current and 

future climate are 

related 

● ‘State of the science’ 

tools 

● Continually 

advancing computers 

are making RCMs 

faster and cheaper to 

run 

● Encourages 

collaborations 

between health and 

climate scientists 

● Expensive, in terms 

of computer 

resources and 

professional expertise 

● Results may be 

sensitive to uncertain 

parameterizations 

● Biases in the GCM 

(providing boundary 

conditions) may 

propagate to regional 

scale 

● Output from models 

may not be in a 

format well-suited to 

health analysis – 

additional data 

processing often 

required 

 

● Health responses 

associated with 

climate extremes and 

nonlinear variability 

● Data-poor areas 

● Connecting outcomes 

with climate 

processes 

● Include land-use 

impacts on climate or 

health outcomes 

Statistical Downscaling 

(especially regression 

methods) 

● Much cheaper (runs 

quickly on desktop 

computers with free 

software) 

● Builds on the 

statistical expertise 

common among 

public health 

researchers 

● May correct for 

biases in GCM 

● Allows for the 

assessment of climate 

results over a range f 

GCMs and emission 

scenarios 

● Assumes 

relationships between 

local and large-scale 

climate remain 

constant 

● Does not capture 

climate mechanisms 

● Not well suited to 

capturing variance or 

extreme events 

● Climate means, and 

variability with some 

limitations 

● Data-rich regions, 

especially Northern 

Hemisphere mid-

latitudes 

● Compare present 

with projected 

climate in a 

consistent framework 

● Test a range of inputs 

● Variable scales, down 

to individual 

measurements sites 

 

3. Method 
 

3.1. Literature on statistical downscaling methods 

 

There are some recent studies about the regression/machine learning based techniques for statistical 

downscaling processes. For example, the comparison between the techniques of artificial neural network 

(ANN), Bayesian (BAYE), classification and regression trees (CART), K nearest neighbor (KNN), 

random forest (RF), and support vector machine (SVM) were observed (Liu et al., 2020) for the 

downscaling of surface soil moisture data. It has been concluded that Random Forest achieved the 

excellent performance by using the land surface temperature (LST), normalized difference vegetation 

index (NDVI), albedo, digital elevation model (DEM), and geographic coordinates as explanatory 

variables. 

 

Another study for the spatial downscaling (Karbalaye Ghorbanpour et al., 2021) compared the 

performances of the support vector machine (SVM), random forest (RF), geographically weighted 

regression (GWR), multiple linear regression (MLR) and exponential regression (ER) for the 
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downscaling of  ‘Tropical Rainfall Measuring Mission’ precipitation data. It has been concluded that 

SVM and RF-based models resulted in considerably higher accuracy. Similarly, GWR outperformed 

MLR and ER because GWR algorithm can capture the spatial variation between the precipitation and 

the environmental factors.  

Statistical downscaling for the temperature and their relevant performances were compared (Pang et al., 

2017). Surface temperature values were obtained for local sites by using the random forest (RF), 

multiple linear regression (MLR) and artificial neural networks (ANN). It has been concluded that 

random forest gives the best results for the downscaling of temperature with high accuracy.  

Different GCM results (precipitation, temperature etc.) may need different techniques for statistical 

downscaling. On the other hand, random forest (RF), geographically weighted regression (GWR) and 

support vector machine (SVM) give higher accuracies for most of the time. 

Additionally, some other interpolation techniques with supportive co-variables to increase accuracy of 

resampling can be implemented for climate analysis. One of the valuable methods might be co-kriging. 

Co-Kriging (CK) is an extension of ordinary kriging in which additional observed variables (known as 

co-variate which are often correlated with the variable of interest) are used to improve the precision of 

the interpolation of the variable of interest. 

Recent studies on kriging-based interpolation/downscaling show that kriging is quite useful from a 

statistical approach for getting higher resolution data. One of the recent studies about a spatial-temporal 

Co-kriging method (Yang et al., 2021), which is referred to as ST-Co-kriging method. This method 

extends traditional Co-kriging from a spatial domain to a space-time domain and takes into account the 

spatial and temporal covariance and cross covariance structures in the spatial-temporal data assimilation. 

They have used daily MODIS images at 250 m and 500 m spatial resolution being assimilated for a 

reduced revisit cycle to generate daily reflectance and Normalized Difference Vegetation Index (NDVI) 

at 30 m spatial resolution. Their process chart can be seen in Figure 3.  
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Figure 3. Process flow of Co-kriging implementation for high resolution image (Yang et al., 2021). 

One of the other studies for the projection of the long-term ungauged rainfall (Tukimat et al., 2019) 

indicates that kriging based interpolation can produce reliable long-term rainfall generation for 

unmeasured observation locations. The GIS-Kriging method used to treat the ungauged station. The 

interpolation results produced by GIS-Kriging at ungauged station was slightly similar to the control 

station with %MAE was 16.1% (historical comparison) and 15.3% (projection comparison). It has 

proven that the integrated model can provide the rainfall trend at ungauged stations reaches 84% of 

accuracy. Bostan et al. (2012) compared multiple linear regression (MLR), ordinary kriging (OK), 

regression kriging (RK), universal kriging (UK), and geographically weighted regression (GWR) in 

mapping the spatial distribution of annual precipitation for Turkey and found that universal kriging is 

the most accurate method. Kara et al. (2016) used the geographically weighted regression (GWR) 

method, based on local implications from physical geographical variables, to downscale climate change 

impacts to a small-scale catchment. 

 

3.2. Choosing the appropriate GCM to downscale 

 

Eight CMIP6 GCMs, which were previously used for Turkey (Bağçaci et al., 2021), are chosen as global 

climate models (MRI-ESM2, MPI-ESM1-2-HR, CNRM-ESM2-1, NOR-ESM2-MM, HADGEM-GC-

31-MM, ACESS CM-2, GFDL-ESM4 and CNRM-CM6-1-HR) to present the methodology. Details 

about these models are given in Table 4. All the CMIP6 outputs are downloaded using Earth System 
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Grid Federation (ESGF) LiU datanode2. The models provide data for three periods - the historical period 

(1979-2014), the validation period (2015-2020), and the future prediction period (2021-2100). IPCC 

describes five different Socio-economic Pathways (SSP) for future society. SSP1 for sustainable 

development, SSP2 for middle-of-the-road development, SSP3 for regional rivalry, SSP4 for inequality 

and SSP5 for fossil-fueled development (Kriegler et al., 2017; Riahi et al., 2017). For the future 

predictions, we ran IPCC SSP2-4.5 and SSP5-8.5 simulations. 

 

Table 4. Global Circulation Models 

Global Circulation 

Model 

Nominal 

Resolution 

(km) 

Ensembl

e 

Historical 

Simulatio

n 

Future Simulation 

Parameter 
SSP 245 

SSP 

858 

CNRM-ESM2-1 250  r1i1p1f2 + + + Near-Surface Air Temperature 

MPI-ESM1-2-HR 100 r1i1p1f1 + + + Near-Surface Air Temperature 

MRI-ESM2 100 r1i1p1f1 + + + Near-Surface Air Temperature 

NOR-ESM2-MM 100 r1i1p1f1 + + + Near-Surface Air Temperature 

ACCESS CM-2 250 r1i1p1f1 + + + Precipitation 

GFDL-ESM4 100 r1i1p1f1 + + + Precipitation 

CNRM-CM6-1-HR 50 r1i1p1f2 + NA + Precipitation 

HADGEM-GC-31-

MM 

100 
r1i1p1f3 + NA + 

Precipitation 

 

 

3.3. Comparison for the historical period  

 

i- Ground Stations 

The GCM results must be compared with the ground observations for the historical period to determine 

the model performance. Since the climate models have different spatial resolutions, a proper grid system 

is created. To select the best representative stations over the region, digital elevation model (NASA 

Shuttle Radar Topography Mission 1 Second Digital Elevation Model) can be used. The idea is to select 

the representative ground station having the same altitude with the median altitude of the GCM grid.  

Eight different grid systems are generated since all eight climate models have different vertical and 

horizontal resolutions. The median elevation is found for every grid over Turkey, then the closest station 

in terms of elevation is used to represent each grid as can be seen in Figure 4 for only CNRM-ESM2-1 

as an example. A total of 588 different stations are selected for eight different GCMs. 

                                                           
2 https://esg-dn1.nsc.liu.se/projects/esgf-liu/ 
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Figure 4. Grid level of CNRM-ESM2-1 GCM and meteorological stations over Turkey. 

 

 

Figure 5. Representative Ground Stations for CNRM-ESM2-1 (Values represent station elevation). 

 

ii- ERA5 reanalysis products 

If the continuous data from the ground stations do not exist, ERA5 Reanalysis 3(The ERA5 global 

reanalysis, 2020) data can be used. ERA5 Reanalysis hourly data is aggregated to daily data for 

comparison with the daily values of GCMs. Recent studies (Bağçaci et al., 2021) have validated ERA5 

data as ground-based meteorological observation data for both temperature and precipitation over 

Turkey. Thus, the ERA5 dataset is used in the further steps.  

Since the spatial resolution of ERA5 (temperature and precipitation) is higher than CMIP6 models, zonal 

statistics such as minimum, maximum, mean and median are calculated for each corresponding grid of 

CMIP6. Several performance parameters have been examined in order to compare daily ERA5 and 

                                                           
3 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels 
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CMIP6 historical data. The suitable model can be selected by considering the following performance 

metrics.  

- Modified Index of agreement (md) 

- Normalized Root Mean Square Error (nRMSE) 

- Pearson correlation coefficient (R) and 

- Kling-Gupta Efficiency (KGE).  

Modified Index of Agreement: 

md is first introduced by Legatas (Legates & McCabe, 1999) as: 

𝑚𝑑 = 1.0 −
∑ |𝑂𝑖−𝑃𝑖|

∑ |𝑃𝑖−𝑂|+|𝑂𝑖−𝑂|
                                                     (1) 

The benefit of md is explained as that errors and differences are given appropriate weighting and are not 

inflated by their square values (Bağçaci et al., 2021). It varies from 0 (no agreement) and 1 (perfect 

agreement). 

Normalized Root Mean Square Error (nRMSE): 

nRMSE is used for absolute error measure for our case in order to be consistent with the previous studies 

(Bağçaci et al., 2021). 

𝑛𝑅𝑀𝑆𝐸 =
[

1

𝑁
∑ (𝑃𝑖−𝑂𝑖)2 ]

1
2

𝑂_− 𝑂_𝑚𝑖𝑛 
                                                      (2) 

Pearson correlation coefficient (R): 

𝑅 =
𝑐𝑜𝑣(𝑃,𝑂)

 𝜎𝑜∗𝜎𝑃
                                                                  (3) 

Kling Gupta Efficiency (KGE): 

KGE is first introduced by Gupta in 2009 (Gupta et al., 2009). KGE is calculated using three components 

(Koch et al., 2018) namely, Person Correlation Coefficient, Bias ratio and variability ratio. 

𝐾𝐺𝐸 = 1 −  √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                                                (4) 

𝛽 =
𝜇𝐺

𝜇𝑂
                                                                      (5) 

𝛾 =

𝜎𝐺
𝜇𝐺
𝜎𝑂
𝜇𝑂

                                                                     (6) 

where 𝛼 is Pearson correlation Coefficient between historical CMIP6 values and ERA5 Reanalysis 

product, 𝛽 is bias ratio and 𝛾 is variability ratio. The KGE values vary from minus infinity to 1, where 

1 indicates higher model performance. 

 

3.4. Bias Correction 

The analysis is performed using daily values from the historical period (1979-2014). The bias of the 

GCM results must be checked. If there is bias in the model results, they must be corrected.   
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The bias in temperature data can be corrected by using a simple seasonal bias correction method (Soriano 

et al., 2019). 

𝑇𝐵𝑖𝑎𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 (𝑀𝑜𝑑𝑒𝑙),𝑑𝑎𝑖𝑙𝑦 =  𝑇𝑀𝑜𝑑𝑒𝑙,𝑑𝑎𝑖𝑙𝑦 − ∆𝑇𝑚𝑜𝑛𝑡ℎ𝑙𝑦                                               (7) 

 

where ∆T is the difference between the mean temperature of the climate model and the observations in 

the corresponding month. The difference between climate model results and observations (monthly data) 

was subtracted from the daily raw values of the model to get bias-adjusted daily temperature values for 

the historical period. 

Biases in the precipitation data can be corrected by using the linear scaling method (Ines & Hansen, 

2006). 

𝑃𝐵𝑖𝑎𝑠−𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 (𝑀𝑜𝑑𝑒𝑙),𝑑𝑎𝑖𝑙𝑦 =  𝑃𝑀𝑜𝑑𝑒𝑙,𝑑𝑎𝑖𝑙𝑦 ∗ (
𝑃𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑃𝑀𝑜𝑑𝑒𝑙
)                                      (8) 

where, 𝑃𝐵𝑖𝑎𝑠−𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 (𝑀𝑜𝑑𝑒𝑙),𝑑𝑎𝑖𝑙𝑦 is the bias-corrected daily precipitation of the model prediction, 

𝑃𝑀𝑜𝑑𝑒𝑙,𝑑𝑎𝑖𝑙𝑦 is the daily precipitation model value, and 𝑃𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 is the means of the observation and 

model values for the corresponding month. The ratio between climate model results and observations 

was multiplied by the model’s daily raw values to get bias-adjusted precipitation values for the historical 

period. 

 

3.5. Results of ERA5 – CMIP6 comparison 

 

One representative GCM is selected for both temperature and precipitation to present the methodology. 

All GCMs are compared to ERA5 daily data for historical period (1979-2014). The performance metrics 

can be presented for each grid for daily temperature and daily precipitation as they are given in Figure 

6 and Figure 7, respectively.  

CMIP6 original, ERA5 and CMIP6 bias corrected mean annual temperature values can be seen in Figure 

8. Values from GCM and Reanalysis outputs are chosen from the best performed grids in terms of 

modified index of agreement. Those grids can be seen in Figure 6 and Figure 7. After the bias is corrected 

on daily temperature values, the comparison with the ERA5 data can be performed on monthly basis 

(Figure 9).  It can be seen that CMIP6 temperature values underestimate the temperature throughout all 

months except September. On daily basis, the bias correction improves the results compared to original 

CMIP6 temperature values (Figure 10).  
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Table 5. Comparison of CMIP6 and ERA5 daily data for the period of 1979 – 2014. 

CNRM-ESM2 

(Temperature) 

Modified Index of 

Agreement 

Normalized Root Mean 

Square Error Pearson R 

Kling-Gupta 

Efficiency 

Minimum 0.722 0.086 0.874 0.856 

Maximum 0.704 0.092 0.854 0.745 

Mean 0.778 0.069 0.892 0.863 

Median 0.777 0.070 0.890 0.875 

CNRM-ESM2 

(Temperature) Bias 

Corrected 

Modified Index of 

Agreement 

Normalized Root Mean 

Square Error Pearson R 

Kling-Gupta 

Efficiency 

Minimum 0.717 0.090 0.869 0.825 

Maximum 0.730 0.083 0.876 0.806 

Mean 0.796 0.064 0.904 0.900 

Median 0.798 0.063 0.906 0.906 

     

ACCESS-CM2 

(Precipitation) 

Modified Index of 

Agreement 

Normalized Root Mean 

Square Error Pearson R 

Kling-Gupta 

Efficiency 

Minimum 0.219 0.120 0.042 -9.024 

Maximum 0.497 0.051 0.069 -0.332 

Mean 0.430 0.070 0.065 -0.043 

Median 0.415 0.068 0.062 -0.160 

ACCESS-CM2 

(Precipitation) Bias 

Corrected 

Modified Index of 

Agreement 

Normalized Root Mean 

Square Error Pearson R 

Kling-Gupta 

Efficiency 

Minimum 0.251 0.102 0.055 -6.105 

Maximum 0.508 0.050 0.079 -0.399 

Mean 0.457 0.063 0.079 0.066 

Median 0.445 0.061 0.077 0.056 
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Figure 6.  Raw (up) and bias corrected (down) modified index of agreement values for temperature 

(Blue circle represents best performed grid over Turkey) 
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Figure 7. Raw (up) and bias corrected (down) modified index of agreement values for precipitation 

(Red circle represents best performed grid over Turkey). 

 

Figure 8. Mean annual temperature for historical period (1979-2004). 
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Figure 9. Temperature Biases of each month. 

 

 

 

Figure 10. Scatter plot before and after bias correction for historical period (Daily). 

 

CMIP6 original, ERA5 and CMIP6 bias corrected annual total precipitation values can be seen in Figure 

11. After the bias is corrected on daily precipitation values, the comparison with the ERA5 data can be 

performed on monthly basis (Figure 12).  It can be seen that CMIP6 temperature values underestimate 

the precipitation for all months except August. On daily basis, the bias correction improves the results 

compared to original CMIP6 daily precipitation values (Figure 13).  
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Figure 11. Annual total precipitation for historical period. 

 

 

Figure 12. Monthly biases of each month for precipitation. 

 

 

Figure 13. Daily monthly precipitation of historical period. (1982-1983) 
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3.6. Statistical downscaling  

 

As statistical downscaling, the co-kriging method is applied. Co-kriging calculates estimates or 

predictions for a poorly sampled variable (the predictand) with help of a well-sampled variable (the 

covariate). Most importantly, the variables should be highly correlated. They can have positive or 

negative correlation. Elevation is used as covariate to downscale the temperature data of CMIP6 outputs. 

On the other hand, distance to the shoreline is used as an additional covariate for the precipitation 

downscaling. 

i- Co-kriging Method 

A model must be fitted to the data to approximately describe the spatial continuity of the data (Cameron 

and Hunter, 2002), since the kriging algorithm requires a positive definite model of spatial variability 

which can be called as variogram fitted model. A variogram is used to display the variability between 

data points as a function of distance. 

Briefly, one tries to fit the spatially distributed data so that a model can understand the relation between 

the distance and the data as depicted in Figure 14. 

 

Figure 14. Theoretical and experimental fitted variogram. (Mendes & Lorandi, 2006) 

 

There are three main parameters needed to fit the variogram model, which are mentioned as follows. 

● Range (a): It is the distance between locations where variance no longer increases. 

● Sill (C + C0): It is the value of the variation chart. From that point, it can be assumed that there 

is no more spatial dependence (which should be carefully observed). 

● Nugget (C0): Describes the unexplained variance of the variable especially for short distances. 

Second important point to mention is the selection of the mathematical model of variogram such as 

‘exponential’, ‘spherical’ or ‘gaussian’ etc. Their differences can be seen in Figure 15.  
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Figure 15. Different mathematical model fitting (Mendes & Lorandi, 2006). 

In order to achieve the most convenient mathematical type and relevant coefficient of fitting model, R 

programming packages can be extremely useful. There are some packages to fit the model 

experimentally with researchers’ trials and some automatic fitting packages to do it by own which will 

be mentioned. 

ii- Preparing Daily Temperature Data 

Bias corrected CMIP6 model (CNRM-ESM2) temperature data are used. The center points of grids are 

assumed as the representative values of that pixel for spatial calculations (Figure 16). The temperature 

values for January 1, 1979 are selected as an example. These points have temperature values of the 

CMIP6 output of the specific grids. For the temperature model (CNRM-ESM2) original spatial 

resolution is 1.40625°. 

                  

Figure 16. Grids and center points of bias corrected CMIP6 temperature values on DEM 

 

The co-kriging is performed for the spatial resolution of ERA5 grids since the performance of the model 

is tested with the available ERA5 data. All of the elevation values come from Shuttle Radar Topography 

Mission (SRTM) data. These elevation values (median values were chosen to implement for grids) are 

used as covariate to make better prediction of downscaled CMIP6 output temperatures since the first 

assumption is temperature, which is directly correlated with elevation values, will be proved by 
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statistical test in the following sections. The ERA5 grid points having 0.25o spatial resolution are 

presented in Figure 17 with the elevation values retrieved from SRTM are used as a covariant. 

 

Figure 17. Grids and center points of ERA5 product on DEM (SRTM) 

iii- Preparing Daily Precipitation Data 

Bias corrected CMIP6 model (ACCESS-CM2) precipitation data are used. The precipitation values of 

February 1, 1979 are selected as an example. In addition to elevation, distance to shoreline is used as 

covariate for the downscaling of CMIP6 precipitation values. Distance to shoreline is calculated by using 

the v.distance processing tool of GRASS-GIS. Briefly, this tool uses two vector input data to calculate 

the closest distance from a vector to another one. In this case, the land boundaries and center points of 

grids were selected as inputs. Thereby, the tool finds the closest path from center points of grids to the 

land boundaries. 

 

iv- Variogram Model Fitting 

In order to implement co-kriging with auto-variogram approach, R programming codes are used 4. 

The correlation coefficient between daily temperature and elevation for the selected date is calculated 

as -0.88 with a p value < 0.005. The daily temperature (Kelvin) and elevation (m) relation can be seen 

in Figure 18. The variogram with the relevant model and its coefficients are obtained (Figure 19). 

                                                           
4 https://github.com/BerkayAkpinarr/Co-Kriging/blob/main/Co-KrigingR.R 
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Figure 18. Daily Temperature (K) vs elevation (m) relation for bias corrected CMIP6 values for 

January 1, 1979       

         

Figure 19. Fitted experimental and fitted variogram model. 

 

After the variogram model is obtained, the bias corrected CMIP6 temperature values are interpolated to 

ERA5 grid size for the date of January 1, 1979 (Figure 20). 
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(a) 

(b) 

Figure 20. Bias corrected CMIP6 (a) and downscaled temperature values of CMIP6 outputs (b) for 

January 1, 1979. 

As a comparison, absolute differences of the values of ERA5 – CMIP6 are depicted in Figure 21. A 

temperature output of bias corrected CMIP6 for January 1, 2025 is obtained and presented in Figure 22. 
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Figure 21. Absolute differences between temperature values of ERA5 and bias corrected CMIP6 data. 

 

Figure 22. Co-kriged temperature output of CMIP6 for Jan 1, 2025. 

Bias corrected CMIP6 precipitation data are also downscaled by using the same methodology. However, 

distance to shoreline is also added as a covariate for precipitation downscaling. It is important to 

determine whether the covariates (both elevation and distance to shoreline) are correlated with the 

precipitation or not. If this is not the case, variogram fitting may not give the correct results. Applying 

the correlation tests, for the CMIP6 precipitation case, it has been observed that both temperature and 

distance to shoreline are statistically correlated covariates as their p values are smaller than 0.1 as shown 

in Figure 23. The variogram with the relevant model and coefficients are given in Figure 24. After the 

variogram model is obtained, the bias corrected CMIP6 precipitation values are interpolated to ERA5 

grid size for date February 1, 1979 (Figure 25). 

 

Figure 23. P values of correlations of elevation and distance for precipitation downscaling. 
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Figure 24. Experimental and fitted variogram for precipitation downscaling with covariates elevation 

and distance to shoreline. 

(a) 

(b) 

Figure 25. Bias corrected CMIP6 (a) and downscaled precipitation values of CMIP6 outputs for 

February 1,1979. 
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The absolute differences on February 1, 1979 for CMIP6 and ERA5 outputs are labeled in Figure 26. 

 

Figure 26. Absolute differences of precipitation of CMIP6 - ERA5 on February 1, 1979. 

 

4. Conclusions 
 

The statistical downscaling methodology to downscale the Global Climate Models’ results to be used at 

pondscape scale is explained. Co-Kriging method is used, since additional observed variables (known 

as co-variates which are often correlated with the variable of interest) are used to improve the precision 

of the interpolation of the variable of interest. The co-variates presented in this report are examples and 

they may be region specific. The explanatory information can often improve the spatial interpolation of 

environmental variables; thus it is recommended to use explanatory variables. If some categorical 

variables (e.g. ecoregion, land use, etc.) are found important as explanatory variables, they must be 

converted to dummy variables which represent presence–absence of each category at any location within 

the study area with a 0 or 1. 

In this report ERA5 reanalysis data are used as ground-based meteorological observations, since 

continuous data from the ground stations do not exist. The proposed methodology can be used for both 

ground observations or reanalysis products.  

All the codes are provided in a GitHub repository.  
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