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Executive Summary 

The Protocol for Remote Sensing for Mapping Ponds will be used for mapping the ponds that will 

be sampled in WP2 and ponds in 8 DEMO-sites chosen in Europe and Uruguay in WP4. This protocol 

presents the use of optical satellite images having medium spatial resolution (10-20 m) in mapping 

the ponds. Linear spectral unmixing and k-means unsupervised classification algorithms are used 

to map the ponds. The ponds having surface area greater than 0.5 ha can be mapped with the 

methodology presented in this protocol. For the ponds smaller than 0.5 ha,mapping accuracy 

changes with respect to the month and/or land use around the ponds. In wet season and having 

less green vegetation around the ponds, the identification accuracy of the ponds from Sentinel 2A 

images is high.
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Introduction 

The Protocol for Remote Sensing for Mapping Ponds will be used for mapping the ponds that will 

be sampled in WP2 and ponds in 8 DEMO-sites chosen in Europe and Uruguay in WP4. This protocol 

will be applied in 2021 and 2022 on all ponds and pondscapes. It constitutes the deliverable D3.1 

(delivering date: May 2021).  

The protocol describes how spatio-temporal distribution of pondscapes is mapped using available 

remote sensing data, with a focus on assessing hydroperiods (the period in which a soil area is 

waterlogged) of the ponds where the stratified sampling will be organized and of DEMO-site ponds. 

The protocol describes the methods to pre-process remote sensing data, algorithm of pond 

detection, temporal changes (hydroperiod) and validation methods. 

The output will be a user-friendly web application, which will present the spatial and temporal 

distribution of the ponds retrieved from satellite data, GIS shape files or raster layers with location 

and attributes of identified ponds.   
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Methods 

3.1. Remote Sensing in mapping water surfaces 

Remote sensing technology offers effective ways to observe surface water dynamics. Remote 

sensing data sets provide spatially explicit and temporally frequent observational data of a number 

of physical attributes about the Earth’s surface that can be appropriately leveraged to map the 

extent of water bodies at regional or even global scale, and to monitor their dynamics at regular 

and frequent time intervals. There are generally two categories of sensors that can serve the 

purpose of measuring surface water—the optical sensor and the microwave sensor. Microwave 

sensors, due to their usage of long wavelength radiation, have the ability to penetrate cloud 

coverage and certain vegetation coverage. Independent of solar radiation, they can work day and 

night under any weather condition. Optical sensors have been widely applied in this field due to 

high data availability, as well as suitable spatial and temporal resolutions (Huang et al., 2015). Huang 

et al. (2018) present a review of using remote sensing in mapping water areas on the Earth surface 

and state that the number of publications has increased steadily after 2000.  

 

Landsat imagery is the most popular data source for calculating water indices, due to its suitable 

spectral bands, as well as its medium spatial resolution. The Landsat program is the longest-running 

enterprise for acquisition of satellite imagery of Earth. Starting from 1972, the program has been 

running and the instruments on the Landsat satellites have acquired millions of images. The Sentinel 

missions include radar and super-spectral imaging for land, ocean and atmospheric monitoring. 

Each Sentinel mission is based on a constellation of two satellites to fulfill and revisit the coverage 

requirements for each mission, providing robust datasets for all Copernicus services. Missions 

started in 2014 and since then Sentinel satellites have acquired images that were used in ocean and 

atmospheric monitoring. Comparison of Landsat 7 and 8 bands with Sentinel-2 is given in Figure 1.  

 

 
Figure 1 Comparison of Landsat 7 and 8 bands with Sentinel-2 
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The principle of extracting surface water from optical images is obviously lower reflectance of water, 

compared to that of other land cover types, in infrared channels. Many methods have been 

developed for extracting water areas from optical remote sensing imagery (Frazier & Page, 2000; 

Manavalan et al., 1993; Ozesmi & Bauer, 2002; Acharya et al., 2016; Olthof, 2017; Sun et al., 2011). 

An easy and effective way to identify water is to use water indices, which are calculated from two 

or more bands, to identify the differences between water and non-water areas. Many indices have 

been developed to identify surface water areas, such as normalized difference water index (NDWI; 

McFeeters, 1996), and modified NDWI (mNDWI; Xu, 2006). McFeeters’s NDWI can be regarded as 

the first generation of water index. It was widely used in the first 10 years of the 21st century 

(Chowdary et al., 2008; Hui et al., 2008). Later, Xu (2006) found that the Short-wave Infrared (SWIR) 

band is able to reflect some subtle characteristics of water, and so replaced the Near Infrared (NIR) 

band in NDWI with the SWIR band and proposed the mNDWI. It is now widely accepted that 

mNDWI is more stable and reliable than NDWI, because the SWIR band is less sensitive to 

concentrations of sediments and other optical active constituents within the water than the NIR 

band (Figure 2). Therefore, mNDWI has been widely used in many recent studies (Chen et al., 2014; 

Mohammadi et al., 2017). One limitation of mNDWI is that it cannot discriminate between water 

and snow, because although the snow has a generally higher reflectance than the water in all the 

visible and infrared channels (Figure 2), the normalized difference between Green band and SWIR 

band for snow is as high as that of water. Therefore, many studies (e.g., Choi & Bindschadler, 2004; 

Salomonson & Appel, 2004) used the normalized difference snow index (NDSI), which has an 

identical formula to mNDWI, to extract snow cover. The timeline of development of major water 

indices and launch of satellite/sensors is given in Figure 3. 
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Figure 2 Reflectance of water, soil and vegetation (a), Reflectance of several typical land cover 

objects, collected from United States Geological Survey (USGS) digital spectral library 

(https://speclab.cr.usgs.gov/spectral-lib.html) 

 

 

https://speclab.cr.usgs.gov/spectral-lib.html
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Figure 3 Timeline diagram of development of major water indices and launch of satellites/sensors 

(Huang et al., 2018).  

 

3.2. Mapping ponds and pondscapes 

i-Data used and web-application development 

Ponds (small standing waters varying in size from 1 m2 to about 2-5 ha in area that may be 

permanent or seasonal, man-made or naturally created) are crucial for biodiversity conservation, 

supporting a larger proportion of rare, endemic and threatened freshwater species than lakes or 

rivers, and are key elements of blue landscape connectivity.  Mapping ponds from satellite images 

has several limitations. The optical sensors vary significantly in their applicability, based largely on 

their spatial, temporal, spectral, and radiometric resolutions. Temporal and spatial resolutions 

determine the scale of processes that can be captured by a given sensor. In general, land surface 

sensors have a finer spatial resolution (~10–30m) but coarser temporal resolution (~1–2 weeks), 

allowing them to detect spatial patterns in water quality in smaller water bodies (e.g., small lakes 

and rivers) but with only 1–2 observations per month depending on the sensor and cloud cover 

conditions (Topp et al., 2020).  

The Copernicus Sentinel-2, wide-swath, high-resolution, multi-spectral imaging mission is used to 

monitor water bodies in mapping the ponds. Mission aims monitoring variability in land surface 

conditions with 290 km swath width and up to 10 days revisit time. Sentinel 2 Level-2A product can 

be utilized since it provides Bottom of Atmosphere (BOA) reflectance images. Its spatial and 

temporal resolution are much better than the available satellite images having medium size spatial 

resolution. Sentinel-2A satellite was launched on 23 June 2015 and has been in operation over 5 

years. 

Landsat 8 was developed as a collaboration between NASA and the U.S. Geological Survey (USGS) 

and launched on February 11, 2013. It aims to monitor the Earth and to keep track of changes on 

the planet’s surface from the impact of both nature and humans. Mission provides continuity with 

the more than 40-year long Landsat land imaging data set. The satellite consists of two science 

instruments—the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These two  
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sensors provide seasonal coverage of the global landmass at a spatial resolution of 30 meters 

(visible, NIR, SWIR); 100 meters (thermal); and 15 meters (panchromatic). The Landsat 8 scene size 

is 185-km-cross-track-by-180-km-along-track with revisit time of 16 day.  

Pond locations (GPS coordinates) retrieved from local databases are used as ground truthing data. 

The selected ponds in WP2 and WP4 are collected in a database. Geocoded and detailed GIS layers 

showing all small water bodies in national databases of Switzerland, Turkey and Spain are already 

obtained. Geospatial attributes of small water bodies such as area, perimeter, elevation are 

calculated and used as ground truth. The ponds of the other countries will be obtained and stored 

in the same database which will be deliverable (Spatial database shared; D3.3). An example of the 

database is given in Appendix 1. 

The Google Earth Engine (GEE) has been used as a platform since it provides cloud-based geospatial 

processing platform to store and process satellite imagery. The current archive of data includes 

those from other satellites, as well as Geographic Information Systems (GIS) based vector data sets, 

social, demographic, weather, digital elevation models, and climate data layers. Moreover, GEE 

offers Application Programming Interface (API) that allows interaction with Python client libraries. 

ii- Pond detection algorithm 

The most direct approach towards extracting surface water is to classify the remotely sensed image 

and count the number of pixels per class over the region of interest. This can be achieved by 

extracting information from an image using classification algorithms. Each pixel represents a series 

of measurements in several spectral bands of the reflectance from a particular ground area. Pixels 

having similar spectral behavior forms spectral classes. By assigning each pixel to a spectral class 

that resembles most, a classification of the entire image is obtained.  

Classification strategies can be grouped into two categories as supervised and unsupervised 

classification and often combined into hybrid methodologies using more than one method 

(Richards, 2013). Unsupervised image classification is a method in which the algorithm separates a 

large number of unknown pixels in an image based on their reflectance values into classes or 

clusters with no direction from the analyst (Tso & Mather, 2010). One of the more common methods 

based on this principle is K-means clustering (MacQueen, 1967). Although this procedure requires 

virtually no human intervention and is based purely on spectrally pixel-based statistics, the analyst 

must supply a mapping between the spectral and the informational classes afterwards. 

Supervised classification, on the other hand, demands much more interaction with the analyst. 

Analyst defines small areas called training sites on the image that are known to represent certain 

informational classes. These training areas should be homogenous enough to represent spectral 

properties of land cover class. In the subsequent classification stage, all pixels are assigned to the 

informational (sub)classes they resemble most. An example of supervised classification is maximum 

likelihood classification. 

Considerable number of mixed pixels are present in every remotely sensed image. This occurs where 

objects are relatively small compared to the spatial resolution of the scanner and results in errors 

in classification. (Gebbinck, M. S., 1998) (Figure 4). 
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Figure 4 Presenting the mixed pixel problem in remotely sensed images (Tong et al., 2016). 

 

 

The sub-pixel classification methods established are more appropriate, since the ratio of each land 

use mask category can be adjusted correctly (Lu & Weng, 2007). Sub-pixel classification techniques 

such as fuzzy, neural networks, regression modeling, regression tree evaluation, and spectral 

mixture evaluation were established in order to address the issue of mixed pixel. Therefore, several 

classification algorithms have been tested to map pondscapes in the study area and linear spectral 

unmixing, k-means unsupervised classification algorithms are selected to apply to develop pond 

detection algorithm. Flowchart of the process is presented in Figure 5. 
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Figure 5 Flowchart of the developed application 

 

Linear spectral unmixing algorithm performs subpixel classification and calculates the fractional 

abundance of different land cover types for individual pixels. However, spectral signatures of 

ground materials such as green vegetation, soil, or rock in the study area are needed to introduce 

as endmembers to a linear mixture model which can be inverted to compute endmember 

abundances for each data spectrum. Therefore, detailed analysis of land cover in the study area 

needed to be assessed in order to apply linear spectral unmixing. Since the local databases only 

have information about  the location of the pondscape, it is not feasible to apply linear spectral 

mixing classification in all areas. Moreover, temporal changes in land cover in study area needs to 

be analyzed and endmembers should be updated in each image when investigating hydroperiods 

of pondscapes. As a result, K-means unsupervised classification algorithm have been applied to 

map pondscape considering it does not require human intervention and independent from the 

study area that is applied. In case of having snow in the scene, NDSI with an altitude threshold is 

used to differentiate the snow cover areas from water pixels. 
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Results 

4.1. Pre-processing of satellite data 

Remote sensing images from Sentinel-2 images have been processed and used in mapping 

pondscapes in the study area due to their high temporal and spatial resolution. However, temporal 

coverage of Sentinel-2 is limited to 5 years. Landsat images will also be used where more temporal 

coverage is needed. 

The Sentinel-2 mission has multi-spectral data with 13 bands in the visible, near infrared, and short-

wave infrared part of the spectrum having spatial resolution of 10 m, 20 m and 60 m based on the 

bands (Table 1). High-resolution (10 m) RGB, Red Edge and lower resolution (20 m) NIR and SWIR 

bands are selected to be used in water detection algorithm. 

 

Table 1. Sentinel-2 Band characteristics 

 

 

First, Sentinel 2A images are filtered according to cloud coverage percentage to process cloudless 

images. Images having cloud coverage less than 20% have been selected. Then, clouds in the 

images are identified from the Sentinel cloud probability dataset (s2cloudless) and shadows are 

defined by cloud projection intersection with low-reflectance near-infrared (NIR) pixels. Identified 

clouds are masked so that images do not contain cloud interferences. 

Pansharpening algorithm is applied to multispectral imagery to create a single high-resolution color 

image to match the spatial scale and to increase the image resolution. Pansharpening process 

merges the multispectral and panchromatic images, which gives the best of both image types, high 

spectral resolution, and medium spatial resolution (10 m) (Choi et al., 2019). This method is 

preferred since the area of the ponds in the study area (< 0.5 ha) are not identifiable  from raw 

satellite images, therefore spatial enhancement is needed. As an example, Figure 6 shows RGB 

Sentinel 2A image taken at 04/05/2020 in the Swiss study area. Figure 7 also shows original and 

pansharped images acquired on 04/05/2020. 
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Figure 6 RGB (Band 4, 3, 2) Sentinel 2A image acquired on 04/05/2020 

  

Figure 7 False color (Bands 5,8A,12) Sentinel images (Original and pansharped images) 

 

4.2. Processing of satellite data 

RGB, Red Edge, NIR and SWIR bands (total of 8) are selected from pansharped multispectral Sentinel 

2A images to produce the train dataset. Approximately 30000 train sets are produced from 

individual images belonging to a study area and 10 clusters are produced. Finally, clusters having 

water bodies are labelled as water body using the ponds from the ground truth. Figure 8 shows 

clustered image and labelled water bodies for the image acquired on 04/05/2020 for Switzerland 

study area.  
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Figure 8 Clustered image and classified  water bodies 

 

4.3. Testing the performance of the algorithm 

Performance of the algorithm is assessed by comparing remotely sensed ponds with the ground 

truth data. Performance statistics for each pond are calculated by observing whether a pond is 

detected or not using the algorithm. The first validation study consists of 110 ponds, which has a 

surface area range 0.1– 4 ha. Sentinel 2A images according to the cloud coverage limitation are 

processed through 2017 to 2020. Hit or miss numbers of algorithm detecting the ponds in each 

image is calculated and yearly histograms are plotted accordingly. lectus massa, pharetra sit amet 

pharetra id, dictum quis felis. Cras convallis, arcu eget volutpat molestie, mi dui sollicitudin lorem, 

et tempus orci lacus ut velit.  

 

 
 

Figure 9 Remotely sensed ponds and ground truth 
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In addition, Figure 10 shows the number of found ponds in the Swiss study area in May for several 

years as a histogram. Month of May has been selected to display the performance of the algorithm 

since high water levels are observed in this month.  

 

 

Figure 10 Number of found ponds retrieved from satellite images in May for four consecutive years 

in Switzerland 

Figure 10 shows that ponds having surface area larger than 0.5 ha are successfully captured from 

satellite images by the classification algorithm. However, this figure only indicates the performance 

of the algorithm to map the ponds in the month of May. In order to monitor the hydroperiod of 

each pond, locally measured and remotely sensed surface areas are compared, and percentage of 

the area found from satellite images are calculated as in Eq. 1. 

 
𝐴𝑟𝑒𝑎 𝑓𝑜𝑢𝑛𝑑 , % =  

𝑅𝑒𝑚𝑜𝑡𝑒𝑙𝑦 𝑆𝑒𝑛𝑠𝑒𝑑 𝐴𝑟𝑒𝑎

𝐿𝑜𝑐𝑎𝑙𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐴𝑟𝑒𝑎
∗ 100 

(1) 

Figure 11 shows remotely monitored hydroperiod of pond ‘Burnier Blanchet Teppes’,  which has an 

area of 3.98 ha in Switzerland. 
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Figure 11 Monitored hydroperiod of ‘Burnier Blanchet Teppes’ pond 

 

Sharp changes in area percentage and zero values of area percentage in Figure 11 might indicate 

that either ponds have been dried out or classification algorithm fails to identify ponds in the image. 

Therefore, further validation is needed using local observations. 
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Conclusions 

5.1. Improving the mapping accuracy  

With the available medium size spatial resolution satellite data provides good performance for the 

ponds having surface area greater than 1 ha. In order to increase the mapping accuracy satellite 

data having high spatial data is needed to be used.   WorldView-4 high resolution optical products 

are available as part of the DigitalGlobe Standard Satellite Imagery products from the QuickBird, 

WorldView-1/-2/-3/4, and GeoEye-1 satellites. In particular, WorldView-4 offers archive 

panchromatic products up to 0.31 m GSD resolution, and 4-Bands Multispectral products up to 1.24 

m GSD resolution.  The algorithm will be tested with high spatial data.  Data are available for on 

demand ordering upon submission of a Project Proposal subject to evaluation and acceptance by 

ESA and the data owner. (https://earth.esa.int/eogateway/catalog/worldview-4-full-archive-and-

tasking) 

5.2. Final presentation of the ponds mapping and future dissemination 

A web application has been developed to monitor hydroperiod of ponds in the study areas in 

Turkey, Switzerland, and Spain. The application allows users to visualize dynamically the ponds, and 

download measured and remotely sensed data (Figure 12). Web application can be accessed with 

following link: 

https://ponderful.herokuapp.com  

 

 

Figure 12: Developed web application to monitor hydroperiod of ponds 

 

 

https://earth.esa.int/aos/worldview
https://earth.esa.int/eogateway/catalog/worldview-4-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-4-full-archive-and-tasking
https://ponderful.herokuapp.com/
https://ponderful.herokuapp.com/
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5.3. Planning 2021-2024  

The algorithm for mapping the ponds will be tested with the ponds in the other countries 

contributing to PONDERFUL project, if needed it will be improved with new data.  

WorldView-4 high resolution optical data will be obtained from ESA and the data will be used with 

the developed algorithm to map the ponds.  

The hydroperiods of the ponds retrieved from satellite images will be compared with the water 

levels observed in the ponds from the stratified sampling and the DEMO-sites.  

 

References 

● Acharya, T. D., Lee, D. H., Yang, I. T., & Lee, J. K. (2016). Identification of water bodies in a 

Landsat 8 OLI image using a J48 Decision Tree. Sensors, 16(7), 1075. 

● Chen, Y., Wang, B., Pollino, C. A., Cuddy, S. M., Merrin, L. E., & Huang, C. (2014). Estimate of 

flood inundation and retention on wetlands using remote sensing and GIS. Ecohydrology, 

7, 1412–1420. https://doi.org/10.1002/eco.1467 

● Choi, H., & Bindschadler, R. (2004). Cloud detection in Landsat imagery of ice sheets using 

shadow matching technique and automatic normalized difference snow index threshold 

value decision. Remote Sensing of Environment, 91(2), 237–242. 

https://doi.org/10.1016/j.rse.2004.03.007 

● Choi, J., Park, H., & Seo, D. (2019). Pansharpening using guided filtering to improve the 

spatial clarity of VHR satellite imagery. Remote Sensing, 11(6). 

https://doi.org/10.3390/rs11060633 

● Chowdary, V. M., Chandran, R. V., Neeti, N., Bothale, R. V., Srivastava, Y. K., Ingle, P., et al. 

(2008). Assessment of surface and sub-surface waterlogged areas in irrigation command 

areas of Bihar state using remote sensing and GIS. Agricultural Water Management, 

95(7),754–766. https://doi.org/10.1016/j.agwat.2008.02.009 

● Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with Landsat TM 

data. Photogrammetric Engineering and Remote Sensing, 66(12), 1461–1467. 

● Gebbinck, M. S. . (1998). Decomposition of Mixed Pixels in Remote Sensing Images to 

Improve the Area Estimation of Agricultural Fields (F. A. O. of the UN (ed.); p. 165). 

Katholieke Univ. Nijmegen. 

● Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface 

water from space using optical sensors: A review. Reviews of Geophysics, 56, 333–360. 

https://doi.org/10.1029/2018RG000598 

● Huang, C., Chen, Y., Wu, J., Li, L., & Liu, R. (2015). An evaluation of Suomi NPP-VIIRS data for 

surface water detection. Remote Sensing Letters, 6(2), 155–164. 

https://doi.org/10.1080/2150704X.2015.1017664  

https://doi.org/10.1002/eco.1467
https://doi.org/10.1016/j.rse.2004.03.007
https://doi.org/10.3390/rs11060633
https://doi.org/10.1016/j.agwat.2008.02.009
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1080/2150704X.2015.1017664


Deliverable D3.1– Protocol for RS Mapping Pondscapes  
 

16 

 

● Hui, F. M., Xu, B., Huang, H. B., Yu, Q., & Gong, P. (2008). Modelling spatial-temporal change 

of Poyang Lake using multitemporal Landsat imagery. International Journal of Remote 

Sensing, 29(20), 5767–5784. https://doi.org/10.1080/01431160802060912 

● Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for 

improving classification performance. In International Journal of Remote Sensing (Vol. 28, 

Issue 5). https://doi.org/10.1080/01431160600746456 

● MacQueen, J. (1967). Some methods for classification and analysis of multivariate 

observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and 

Probability, 1. 

● Manavalan, P., Sathyanath, P., & Rajegowda, G. L. (1993). Digital image analysis techniques 

to estimate waterspread for capacity evaluations of reservoirs. Photogrammetric 

Engineering and Remote Sensing, 59(9), 1389–1395. 

● McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the 

delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–

1432. 

● Mohammadi, A., Costelloe, J. F., & Ryu, D. (2017). Application of time series of remotely 

sensed normalized difference water, vegetation and moisture indices in characterizing flood 

dynamics of large-scale arid zone floodplains. Remote Sensing of Environment, 190, 70–82. 

https:// doi.org/10.1016/j.rse.2016.12.003 

● Olthof, I. (2017). Mapping seasonal inundation frequency (1985–2016) along the St-John 

River, New Brunswick, Canada using the Landsat archive. Remote Sensing, 9(2), 143. 

● Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology 

and Management, 10(5), 381–402. https://doi.org/10.1023/a:1020908432489 

● Richards, J. A. (2013). Remote sensing digital image analysis: An introduction. In Remote 

Sensing Digital Image Analysis: An Introduction (Vol. 9783642300622). 

https://doi.org/10.1007/978-3-642-30062-2 

● Salomonson, V. V., & Appel, I. (2004). Estimating fractional snow cover from MODIS using 

the normalized difference snow index. Remote Sensing of Environment, 89(3), 351–360. 

https://doi.org/10.1016/j.rse.2003.10.016  

● Sun, D. L., Yu, Y. Y., & Goldberg, M. D. (2011). Deriving water fraction and flood maps from 

MODIS images using a decision tree approach. IEEE Journal of Selected Topics Applied Earth 

Observation Remote Sensing, 4(4), 814–825. https://doi.org/10.1109/jstars.2011.2125778 

● Tong L., Zhaou, J., Qian, Y., Bai, X., & Gao, Y. (2016). Nonnegative matrix factorization based 

hyperspectral unmixing with partially known endmembers. IEEE Transactions on Geoscience 

and Remote Sensing , 54(11), 6531-6544.  

● Topp S.N., Pavesky, T.M., Jensen, D., & Ross, M.R. (2020). Research Trends in th euse of 

remote sensing for inland quality science: Moving towards multidiciplinary applications. 

Water, 12, 169; https://doi:10.3390/w12010169  

https://doi.org/10.1080/01431160802060912
https://doi.org/10.1080/01431160600746456
https://doi.org/10.1023/a:1020908432489
https://doi.org/10.1109/jstars.2011.2125778
about:blank


Deliverable D3.1– Protocol for RS Mapping Pondscapes  
 

17 

 

● Tso, B., & Mather, P. M. (2010). Pattern recognition principles. In Classification Methods for 

Remotely Sensed Data. https://doi.org/10.4324/9780203303566_chapter_2 

● Xu, H. Q. (2006). Modification of normalised difference water index (NDWI) to enhance open 

water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 

3025–3033. 

 

Appendix: 

Table A1: Pond database of Switzerland 

id Date Name Surface Depth_max Depth_mean L_bank Altitude Area 

1 4/3/2017 Mouilles 3000 310 126 577 414 0.94 

2 4/3/2017 Combes-Chapuis 3340 120 70 614 462 0.52 

3 4/3/2017 Laconnex 2600 250 194 283 433 0.55 

4 4/3/2017 Bois-Vieux 3582 140 80 357 493 0.38 

5 4/3/2017 Feuillets 1062 150 100  490 0.11 

6 4/3/2017 Pre-Bordon_aval 1070 100 57 107 469 0.06 

7 4/3/2017 Pre-Bordon_amont 790 95 85 96 469 0.04 

8 4/3/2017 Dolliets 2980 136 90 434 486 0.18 

9 4/3/2017 Arales_aval 790 220 100 146 494 0.02 

10 4/3/2017 Arales_amont 550 100 66 85 496 0.01 

11 4/3/2017 Rapes 1410 110 80 241 466 0.11 

12 4/3/2017 Prejins 142 100 48.3 50 428 0.01 

13 4/3/2017 BIT 3754 23 18.5 300 443 0.43 

14 4/3/2017 Loex-Hopital 500 73 66.9 82 409 0.05 

15 4/3/2017 Franchises 224 60 40 71 419 0.15 

16 4/3/2017 Paix 263 21 20.5 114 426 0.02 

17 4/3/2017 Vessy 500 100 58 122 414 0.01 

18 4/3/2017 Parc_Bertrand 275 42 39.1 88 417 0.03 

19 4/3/2017 Zulian 439 90 63.7 76 418 0.04 

20 4/3/2017 Cimetiere_St_Georges 675 79 65.9 149 420 0.07 

21 4/3/2017 Jardin_botanique 560 88 75.3 140 382 0.06 

22 4/3/2017 Jardin_bota2_serres 120 54 52 50 389 0.01 

23 4/3/2017 BoisdeBay_calamite 42 30 25 15 376 0.01 

24 4/3/2017 BoisdeBay_ancien 90 13 8.4 45 375 0.01 

25 4/3/2017 BoisdeBay_recolte_toit 140 42 29.7 55 375 0.01 

https://doi.org/10.4324/9780203303566_chapter_2
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Table  A:2 Pond database of Spain 

id date Name ALT PRE TMIT TMIN TMAX ORI Area 

1 4/3/2017 Bassa de Ponent 139 641 15.7 -4.8 37 Natural 0.20 

2 4/3/2017 Estany de la Rajoleria  

de la Gutina 

152 641 15.7 -4.8 37 Natural 0.08 

3 4/3/2017 Bassa dels Torlits 142 641 15.7 -4.8 37 Natural 1.74 

4 4/3/2017 Estanyol de la 

Cardonera  

de la Gutina 

152 641 15.7 -4.8 37 Natural 0.20 

5 4/3/2017 Bassa del Mas Faig 133 641 15.7 -4.8 37 Natural 0.43 

6 4/3/2017 Bassa del Serrat  

de les Garrigues 

144 641 15.7 -4.8 37 Natural 0.03 

7 4/3/2017 Estany Petit dels Torlits 142 641 15.7 -4.8 37 Natural 0.87 

8 4/3/2017 Estany de les Moles 139 641 15.7 -4.8 37 Natural 0.47 

9 4/3/2017 Prat del Serrat 

 de les Garrigues 

143 641 15.7 -4.8 37 Natural 0.51 

10 4/3/2017 Estany Gran de Canadal 171 641 15.7 -4.8 37 Natural 0.00 

11 4/3/2017 Bassa de Llevant 145 641 15.7 -4.8 37 Natural 0.26 

12 6/2/2017 Bassa de Ponent 139 641 15.7 -4.8 37 Natural 0.20 

13 6/2/2017 Estany de la Rajoleria  

de la Gutina 

152 641 15.7 -4.8 37 Natural 0.08 

14 6/2/2017 Bassa dels Torlits 142 641 15.7 -4.8 37 Natural 1.74 

15 6/2/2017 Estanyol de la 

Cardonera 

 de la Gutina 

152 641 15.7 -4.8 37 Natural 0.20 

16 6/2/2017 Bassa del Mas Faig 133 641 15.7 -4.8 37 Natural 0.43 

17 6/2/2017 Bassa del Serrat  

de les Garrigues 

144 641 15.7 -4.8 37 Natural 0.03 

18 6/2/2017 Estany Petit dels Torlits 142 641 15.7 -4.8 37 Natural 0.87 

19 6/2/2017 Estany de les Moles 139 641 15.7 -4.8 37 Natural 0.47 

20 6/2/2017 Prat del Serrat 

 de les Garrigues 

143 641 15.7 -4.8 37 Natural 0.51 

21 6/2/2017 Estany Gran de Canadal 171 641 15.7 -4.8 37 Natural 0.00 

22 6/2/2017 Bassa de Llevant 145 641 15.7 -4.8 37 Natural 0.26 

23 7/2/2017 Bassa de Ponent 139 641 15.7 -4.8 37 Natural 0.20 

24 7/2/2017 Estany de la Rajoleria 

 de la Gutina 

152 641 15.7 -4.8 37 Natural 0.08 

25 7/2/2017 Bassa dels Torlits 142 641 15.7 -4.8 37 Natural 1.74 
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